Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.264
Filtrar
1.
J Virol ; 98(3): e0173123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38329345

RESUMO

In our 2012 genome announcement (J Virol 86:11403-11404, 2012, https://doi.org/10.1128/JVI.01954-12), we initially identified the host bacterium of bacteriophage Enc34 as Enterobacter cancerogenus using biochemical tests. However, later in-house DNA sequencing revealed that the true host is a strain of Hafnia alvei. Capitalizing on our new DNA-sequencing capabilities, we also refined the genomic termini of Enc34, confirming a 60,496-bp genome with 12-nucleotide 5' cohesive ends. IMPORTANCE: Our correction reflects the evolving landscape of bacterial identification, where molecular methods have supplanted traditional biochemical tests. This case underscores the significance of revisiting past identifications, as seemingly known bacterial strains may yield unexpected discoveries, necessitating essential updates to the scientific record. Despite the host identity correction, our genome announcement retains importance as the first complete genome sequence of a Hafnia alvei bacteriophage.


Assuntos
Bacteriófagos , Hafnia alvei , 60490 , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Enterobacter/química , Enterobacter/virologia , Genoma Viral/genética , Hafnia alvei/classificação , Hafnia alvei/genética , Hafnia alvei/virologia , Erro Científico Experimental , Análise de Sequência de DNA
2.
J Virol ; 98(3): e0147623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376991

RESUMO

The ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen Salmonella enterica. To determine phage host range, a diverse collection of Enterobacteriaceae and Salmonella enterica was used and genes involved in infection by six SPLA phages were identified using Salmonella Typhimurium strain ST4/74. Candidate host receptors included lipopolysaccharide (LPS), cellulose, and BtuB. Lipopolysaccharide was identified as a susceptibility factor for phage SPLA1a and mutations in LPS biosynthesis genes spontaneously emerged during culture with S. Typhimurium. Conversely, LPS was a resistance factor for phage SPLA5b which suggested that emergence of LPS mutations in culture with SPLA1a represented collateral sensitivity to SPLA5b. We show that bacteria-phage co-culture with SPLA1a and SPLA5b was more successful in limiting the emergence of phage resistance compared to single phage co-culture. Identification of host susceptibility and resistance genes and understanding infection dynamics are critical steps in the rationale design of phage cocktails against specific bacterial pathogens.IMPORTANCEAs antibiotic resistance continues to emerge in bacterial pathogens, bacterial viruses (phage) represent a potential alternative or adjunct to antibiotics. One challenge for their implementation is the predisposition of bacteria to rapidly acquire resistance to phages. We describe a functional genomics approach to identify mechanisms of susceptibility and resistance for newly isolated phages that infect and lyse Salmonella enterica and use this information to identify phage combinations that exploit collateral sensitivity, thus increasing efficacy. Collateral sensitivity is a phenomenon where resistance to one class of antibiotics increases sensitivity to a second class of antibiotics. We report a functional genomics approach to rationally design a phage combination with a collateral sensitivity dynamic which resulted in increased efficacy. Considering such evolutionary trade-offs has the potential to manipulate the outcome of phage therapy in favor of resolving infection without selecting for escape mutants and is applicable to other virus-host interactions.


Assuntos
Bacteriófagos , Microbiologia Ambiental , Salmonella enterica , Antibacterianos/uso terapêutico , Bacteriófagos/isolamento & purificação , Sensibilidade Colateral a Medicamentos , Lipopolissacarídeos , Salmonella enterica/virologia , Terapia por Fagos , Infecções por Salmonella/terapia , Humanos
3.
Arch Virol ; 168(8): 216, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525023

RESUMO

In this study, a new Salmonella phage, NX263, was isolated from sewage. This phage could lyse 90.57% (48/53) of the bacterial strains tested and showed good activity over a wide range of temperature (up to 60°C) and pH (5-10). Phylogenetic analysis showed that it should be classified as a member of the genus Skatevirus. The genome of phage NX263 is 46,574 bp in length with a GC content of 45.52%. It contains 89 open reading frames and two tRNA genes. No lysogeny, drug resistance, or virulence-associated genes were identified in the genome sequence, suggesting that this phage could potentially be used to treat Salmonella Pullorum infections.


Assuntos
Bacteriófagos , Genoma Viral , Salmonella enterica , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Genoma Viral/genética , Filogenia , Salmonella enterica/virologia
4.
Anal Chem ; 95(26): 10008-10016, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37342882

RESUMO

Phages have already been employed to detect bacteria because of their specific recognition capability and strong infectious activity toward their host. However, the reported single-phage-based techniques are inevitably restricted by false negative results that arose from extremely high strain specificity of phages. In this study, a cocktail composed of three Klebsiella pneumoniae (K. pneumoniae) phages was prepared as a recognition agent to broaden the recognition spectrum for detecting this bacterial species. A total of 155 clinically isolated strains of K. pneumoniae collected from four hospitals were adopted to test its recognition spectrum. A superior recognition rate of 91.6% for the strains was achieved due to the complementarity of the recognition spectra of the three phages composed of the cocktail. However, the recognition rate is as low as 42.3-62.2% if a single phage is employed. Based on the wide-spectrum recognition capability of the phage cocktail, a fluorescence resonance energy transfer method was established for detecting K. pneumoniae strains by employing fluorescein isothiocyanate labeled to the phage cocktail and Au nanoparticles labeled to p-mercaptophenylboronic acid as energy donors and acceptors, respectively. The detection process can be completed within 35 min, with a wide dynamic range of 5.0 × 102-1.0 × 107 CFU/mL. The application potential was verified by applying it to quantitate K. pneumoniae in different sample matrixes. This pioneer work opens an avenue for achieving wide-spectrum detection of different strains belonging to the same bacterial species with the phage cocktail.


Assuntos
Klebsiella pneumoniae , Klebsiella pneumoniae/química , Bacteriófagos/isolamento & purificação , Especificidade da Espécie , Ouro , Nanopartículas Metálicas
5.
Nature ; 617(7961): 581-591, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37165188

RESUMO

The spatiotemporal structure of the human microbiome1,2, proteome3 and metabolome4,5 reflects and determines regional intestinal physiology and may have implications for disease6. Yet, little is known about the distribution of microorganisms, their environment and their biochemical activity in the gut because of reliance on stool samples and limited access to only some regions of the gut using endoscopy in fasting or sedated individuals7. To address these deficiencies, we developed an ingestible device that collects samples from multiple regions of the human intestinal tract during normal digestion. Collection of 240 intestinal samples from 15 healthy individuals using the device and subsequent multi-omics analyses identified significant differences between bacteria, phages, host proteins and metabolites in the intestines versus stool. Certain microbial taxa were differentially enriched and prophage induction was more prevalent in the intestines than in stool. The host proteome and bile acid profiles varied along the intestines and were highly distinct from those of stool. Correlations between gradients in bile acid concentrations and microbial abundance predicted species that altered the bile acid pool through deconjugation. Furthermore, microbially conjugated bile acid concentrations exhibited amino acid-dependent trends that were not apparent in stool. Overall, non-invasive, longitudinal profiling of microorganisms, proteins and bile acids along the intestinal tract under physiological conditions can help elucidate the roles of the gut microbiome and metabolome in human physiology and disease.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Intestinos , Metaboloma , Proteoma , Humanos , Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal/fisiologia , Proteoma/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Fezes/química , Fezes/microbiologia , Fezes/virologia , Intestinos/química , Intestinos/metabolismo , Intestinos/microbiologia , Intestinos/fisiologia , Intestinos/virologia , Digestão/fisiologia
6.
Microbiol Spectr ; 11(3): e0434022, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36995238

RESUMO

Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is increasingly used as a probiotic to treat human diseases, but its phages in the human gut remain unexplored. Here, we report its first gut phage, Gut-P1, which we systematically screened using metagenomic sequencing, virus-like particle (VLP) sequencing, and enrichment culture from 35 fecal samples. Gut-P1 is virulent, belongs to the Douglaswolinvirus genus, and is highly prevalent in the gut (~11% prevalence); it has a genome of 79,928 bp consisting of 125 protein coding genes and displaying low sequence similarities to public L. plantarum phages. Physiochemical characterization shows that it has a short latent period and adapts to broad ranges of temperatures and pHs. Furthermore, Gut-P1 strongly inhibits the growth of L. plantarum strains at a multiplicity of infection (MOI) of 1e-6. Together, these results indicate that Gut-P1 can greatly impede the application of L. plantarum in humans. Strikingly, Gut-P1 was identified only in the enrichment culture, not in our metagenomic or VLP sequencing data nor in any public human phage databases, indicating the inefficiency of bulk sequencing in recovering low-abundance but highly prevalent phages and pointing to the unexplored hidden diversity of the human gut virome despite recent large-scale sequencing and bioinformatics efforts. IMPORTANCE As Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is increasingly used as a probiotic to treat human gut-related diseases, its bacteriophages may pose a certain threat to their further application and should be identified and characterized more often from the human intestine. Here, we isolated and identified the first gut L. plantarum phage that is prevalent in a Chinese population. This phage, Gut-P1, is virulent and can strongly inhibit the growth of multiple L. plantarum strains at low MOIs. Our results also show that bulk sequencing is inefficient at recovering low-abundance but highly prevalent phages such as Gut-P1, suggesting that the hidden diversity of human enteroviruses has not yet been explored. Our results call for innovative approaches to isolate and identify intestinal phages from the human gut and to rethink our current understanding of the enterovirus, particularly its underestimated diversity and overestimated individual specificity.


Assuntos
Bacteriófagos , Fezes , Lactobacillus plantarum , Humanos , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Fezes/microbiologia , Fezes/virologia , Lactobacillus plantarum/virologia , Metagenômica , Técnicas de Cultura , Genoma Viral/genética , Biodiversidade
7.
J Clin Lab Anal ; 36(7): e24497, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35708005

RESUMO

OBJECTIVES: Acinetobacter Baumannii is an opportunistic nosocomial pathogen belonging to the Moraxellaceae family. The emergence of multidrug resistant strains of this pathogen caused many problems for hospitals and patients. The aim of the current study was to isolate, identify, and morphologically, physiologically, and in vivo analyze a new lytic bacteriophage targeting extensively drug-resistant (XDR) A. baumannii. MATERIALS AND METHODS: Different wastewater samples were tested for isolation of lytic bacteriophage against 19 A. baumannii isolates obtained from patients hospitalized in a hospital in Arak, Iran, from January 2019 to March 2019. The phenotypic and genotypic characteristics of A. baumannii strains (resistance genes including: adeA, adeB, adeC, adeR, adeS, ISAba1, blaOXA-23, blaOXA-24) were analyzed. The isolated phage characteristics including adsorption time, pH and thermal stability, host range, one-step growth rate, electron microscopy examination, and therapeutic efficacy of the phage were also investigated. Therapeutic efficacy of the phage was evaluated in a rat model with burn infection of XDR A. baumannii. The lesion image was taken on different days after burning and infection induction and was compared with phage untreated lesions. RESULTS: The results showed unique characteristics of the isolated phage (vB-AbauM-Arak1) including high specificity for Acinetobacter baumannii, stability at a relatively wide range of temperatures and pH values, short adsorption time, short latent period, and large burst size. In relation to the therapeutic efficacy of the phage, the lesion area decreased in phage-treated groups over 14 days than in those untreated, significantly (p < 0.05). CONCLUSION: Our findings demonstrated that isolated lytic phage was able to eliminate burn infections caused by XDR A. baumannii in a rat model. So, it may be recommended as alternative options toward to developing a treatment for extensively drug resistant Acinetobacter infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Queimaduras , Farmacorresistência Bacteriana Múltipla , Terapia por Fagos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/terapia , Infecções por Acinetobacter/virologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/virologia , Animais , Antibacterianos/farmacologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Queimaduras/microbiologia , Queimaduras/terapia , Queimaduras/virologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Irã (Geográfico) , Ratos
8.
Nucleic Acids Res ; 50(13): e75, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451479

RESUMO

Advances in genome sequencing have produced hundreds of thousands of bacterial genome sequences, many of which have integrated prophages derived from temperate bacteriophages. These prophages play key roles by influencing bacterial metabolism, pathogenicity, antibiotic resistance, and defense against viral attack. However, they vary considerably even among related bacterial strains, and they are challenging to identify computationally and to extract precisely for comparative genomic analyses. Here, we describe DEPhT, a multimodal tool for prophage discovery and extraction. It has three run modes that facilitate rapid screening of large numbers of bacterial genomes, precise extraction of prophage sequences, and prophage annotation. DEPhT uses genomic architectural features that discriminate between phage and bacterial sequences for efficient prophage discovery, and targeted homology searches for precise prophage extraction. DEPhT is designed for prophage discovery in Mycobacterium genomes but can be adapted broadly to other bacteria. We deploy DEPhT to demonstrate that prophages are prevalent in Mycobacterium strains but are absent not only from the few well-characterized Mycobacterium tuberculosis strains, but also are absent from all ∼30 000 sequenced M. tuberculosis strains.


Assuntos
Genômica/métodos , Micobacteriófagos/isolamento & purificação , Mycobacterium , Prófagos/isolamento & purificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Micobacteriófagos/genética , Mycobacterium/genética , Mycobacterium/virologia , Prófagos/genética
9.
Cell Rep ; 38(7): 110376, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172163

RESUMO

Bacteriophages (phages) are diverse and abundant constituents of microbial communities worldwide, capable of modulating bacterial populations in diverse ways. Here, we describe the phage HNL01, which infects the marine bacterium Vibrio fischeri. We use culture-based approaches to demonstrate that mutations in the exopolysaccharide locus of V. fischeri render this bacterium resistant to infection by HNL01, highlighting the extracellular matrix as a key determinant of HNL01 infection. Additionally, using the natural symbiosis between V. fischeri and the squid Euprymna scolopes, we show that, during colonization, V. fischeri is protected from phages present in the ambient seawater. Taken together, these findings shed light on independent yet synergistic host- and bacterium-based strategies for resisting symbiosis-disrupting phage predation, and we present important implications for understanding these strategies in the context of diverse host-associated microbial ecosystems.


Assuntos
Bacteriófagos/fisiologia , Decapodiformes/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Modelos Biológicos , Simbiose/fisiologia , Aliivibrio fischeri/virologia , Animais , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Mutação/genética , Plâncton/metabolismo
10.
Microbiol Spectr ; 10(1): e0167821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171030

RESUMO

Urinary tract infections (UTIs) are the second most frequent bacterial infections worldwide, with Escherichia coli being the main causative agent. The increase of antibiotic-resistance determinants among isolates from clinical samples, including UTIs, makes the development of novel therapeutic strategies a necessity. In this context, the use of bacteriophages as a therapeutic alternative has been proposed, due to their ability to efficiently kill bacteria. In this work, we isolated and characterized three novel bacteriophages, microbes laboratory phage 1 (MLP1), MLP2, and MLP3, belonging to the Chaseviridae, Myoviridae, and Podoviridae families, respectively. These phages efficiently infect and kill laboratory reference strains and multidrug-resistant clinical E. coli isolates from patients with diagnosed UTIs. Interestingly, these phages are also able to infect intestinal pathogenic Escherichia coli strains, such as enteroaggregative E. coli and diffusely adherent E. coli. Our data show that the MLP phages recognize different regions of the lipopolysaccharide (LPS) molecule, an important virulence factor in bacteria that is also highly variable among different E. coli strains. Altogether, our results suggest that these phages may represent an interesting alternative for the treatment of antibiotic-resistant E. coli. IMPORTANCE Urinary tract infections affect approximately 150 million people annually. The current antibiotic resistance crisis demands the development of novel therapeutic alternatives. Our results show that three novel phages, MLP1, MLP2, and MLP3 are able to infect both laboratory and multidrug-resistant clinical isolates of Escherichia coli. Since these phages (i) efficiently kill antibiotic-resistant clinical isolates of uropathogenic Escherichia coli (UPEC), (ii) recognize different portions of the LPS molecule, and (iii) are able to efficiently infect intestinal pathogenic Escherichia coli hosts, we believe that these novel phages are good candidates to be used as a therapeutic alternative to treat antibiotic-resistant E. coli strains generating urinary tract and/or intestinal infections.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Escherichia coli/virologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Especificidade de Hospedeiro , Humanos , Lipopolissacarídeos , Terapia por Fagos , Podoviridae , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Fatores de Virulência
11.
Viruses ; 14(2)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215775

RESUMO

The number of sequenced Acinetobacter phage genomes in the International Nucleotide Sequence Database Collaboration has increased significantly in recent years, from 37 in 2017 to a total of 139 as of January 2021 with genome sizes ranging from 31 to 378 kb. Here, we explored the genetic diversity of the Acinetobacter phages using comparative genomics approaches that included assessment of nucleotide similarity, shared gene content, single gene phylogeny, and the network-based classification tool vConTACT2. Phages infecting Acinetobacter sp. are genetically diverse and can be grouped into 8 clusters (subfamilies) and 46 sub-clusters (genera), of which 8 represent genomic singletons (additional genera). We propose the creation of five new subfamilies and suggest a reorganisation of the genus Obolenskvirus. These results provide an updated view of the viruses infecting Acinetobacter species, providing insights into their diversity.


Assuntos
Acinetobacter/virologia , Bacteriófagos/genética , Variação Genética , Myoviridae/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Sequência de Bases , Genoma Viral , Genômica , Myoviridae/classificação , Myoviridae/isolamento & purificação , Filogenia
12.
Viruses ; 14(2)2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215788

RESUMO

Multidrug-resistant Acinetobacter baumannii (MDR A. baumannii) is one of the ESKAPE pathogens that restricts available treatment options. MDR A. baumannii is responsible for a dramatic increase in case numbers of a wide variety of infections, including skin and soft tissue infections (SSTIs), resulting in pyoderma, surgical debridement, and necrotizing fasciitis. To investigate an alternative medical treatment for SSTIs, a broad range lytic Acinetobacter phage, vB _AbP_ABWU2101 (phage vABWU2101), for lysing MDR A. baumannii in associated SSTIs was isolated and the biological aspects of this phage were investigated. Morphological characterization and genomic analysis revealed that phage vABWU2101 was a new species in the Friunavirus, Beijerinckvirinae, family Autographiviridae, and order Caudovirales. Antibiofilm activity of phage vABWU2101 demonstrated good activity against both preformed biofilms and biofilm formation. The combination of phage vABWU2101 and tigecycline showed synergistic antimicrobial activities against planktonic and biofilm cells. Scanning electron microscopy confirmed that the antibacterial efficacy of the combination of phage vABWU2101 and tigecycline was more effective than the phage or antibiotic alone. Hence, our findings could potentially be used to develop a therapeutic option for the treatment of SSTIs caused by MDR A. baumannii.


Assuntos
Infecções por Acinetobacter/terapia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/virologia , Antibacterianos/farmacologia , Bacteriófagos/fisiologia , Dermatopatias/terapia , Infecções dos Tecidos Moles/terapia , Tigeciclina/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/fisiologia , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Terapia Combinada , Farmacorresistência Bacteriana Múltipla , Genoma Viral , Humanos , Filogenia , Dermatopatias/tratamento farmacológico , Dermatopatias/microbiologia , Infecções dos Tecidos Moles/tratamento farmacológico , Infecções dos Tecidos Moles/microbiologia
13.
Viruses ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215807

RESUMO

Bacillus anthracis is a potent biowarfare agent, able to be highly lethal. The bacteria dwell in the soil of certain regions, as natural flora. Bacteriophages or their lytic enzymes, endolysins, may be an alternative for antibiotics and other antibacterials to fight this pathogen in infections and to minimize environmental contamination with anthrax endospores. Upon screening environmental samples from various regions in Poland, we isolated three new siphophages, J5a, F16Ba, and z1a, specific for B. anthracis. They represent new species related to historical anthrax phages Gamma, Cherry, and Fah, and to phage Wbeta of Wbetavirus genus. We show that the new phages and their closest relatives, phages Tavor_SA, Negev_SA, and Carmel_SA, form a separate clade of the Wbetavirus genus, designated as J5a clade. The most distinctive feature of J5a clade phages is their cell lysis module. While in the historical phages it encodes a canonical endolysin and a class III holin, in J5a clade phages it encodes an endolysin with a signal peptide and two putative holins. We present the basic characteristic of the isolated phages. Their comparative genomic analysis indicates that they encode two receptor-binding proteins, of which one may bind a sugar moiety of B. anthracis cell surface.


Assuntos
Bacillus anthracis/virologia , Bacteriófagos/isolamento & purificação , Siphoviridae/isolamento & purificação , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/metabolismo , Genoma Viral , Genômica , Filogenia , Receptores Virais/genética , Receptores Virais/metabolismo , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
Viruses ; 14(2)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35215838

RESUMO

The phyllosphere microbiome plays an important role in plant fitness. Recently, bacteriophages have been shown to play a role in shaping the bacterial community composition of the phyllosphere. However, no studies on the diversity and abundance of phyllosphere bacteriophage communities have been carried out until now. In this study, we extracted, sequenced, and characterized the dsDNA and ssDNA viral community from a phyllosphere for the first time. We sampled leaves from winter wheat (Triticum aestivum), where we identified a total of 876 virus operational taxonomic units (vOTUs), mostly predicted to be bacteriophages with a lytic lifestyle. Remarkably, 848 of these vOTUs corresponded to new viral species, and we estimated a minimum of 2.0 × 106 viral particles per leaf. These results suggest that the wheat phyllosphere harbors a large and active community of novel bacterial viruses. Phylloviruses have potential applications as biocontrol agents against phytopathogenic bacteria or as microbiome modulators to increase plant growth-promoting bacteria.


Assuntos
Bacteriófagos/isolamento & purificação , Triticum/microbiologia , Bacteriófagos/classificação , Bacteriófagos/genética , Genoma Viral/genética , Metagenoma/genética , Microbiota , Folhas de Planta/microbiologia , Pseudomonadaceae/classificação , Pseudomonadaceae/genética , Pseudomonadaceae/isolamento & purificação , Pseudomonadaceae/virologia , Toxinas Biológicas/genética
15.
Viruses ; 14(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35215857

RESUMO

Vibrio parahaemolyticus causes aquatic vibriosis. Its biofilm protects it from antibiotics; therefore, a new different method is needed to control V. parahaemolyticus for food safety. Phage therapy represents an alternative strategy to control biofilms. In this study, the lytic Vibrio phage vB_VpaP_FE11 (FE11) was isolated from the sewers of Guangzhou Huangsha Aquatic Market. Electron microscopy analysis revealed that FE11 has a typical podovirus morphology. Its optimal stability temperature and pH range were found to be 20-50 °C and 5-10 °C, respectively. It was completely inactivated following ultraviolet irradiation for 20 min. Its latent period is 10 min and burst size is 37 plaque forming units/cell. Its double-stranded DNA genome is 43,397 bp long, with a G + C content of 49.24% and 50 predicted protein-coding genes. As a lytic phage, FE11 not only prevented the formation of biofilms but also could destroy the formed biofilms effectively. Overall, phage vB_VpaP_FE11 is a potential biological control agent against V. parahaemolyticus and the biofilm it produces.


Assuntos
Bacteriófagos/fisiologia , Biofilmes/crescimento & desenvolvimento , Podoviridae/fisiologia , Vibrio parahaemolyticus/fisiologia , Vibrio parahaemolyticus/virologia , Bacteriólise , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Agentes de Controle Biológico , Genoma Viral , Especificidade de Hospedeiro , Terapia por Fagos , Filogenia , Podoviridae/classificação , Podoviridae/genética , Podoviridae/isolamento & purificação , Esgotos/virologia
16.
Viruses ; 14(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215876

RESUMO

Cyanobacterial blooms are a worldwide ecological issue. Cyanophages are aquatic viruses specifically infecting cyanobacteria. Little is known about freshwater cyanophages. In this study, a freshwater cyanophage, Mae-Yong924-1, was isolated by the double-layer agar plate method using Microcystis aeruginosa FACHB-924 as an indicator host. Mae-Yong924-1 has several unusual characteristics: a unique shape, cross-taxonomic order infectivity and a very unique genome sequence. Mae-Yong924-1 contains a nearly spherical head of about 100 nm in diameter. The tail or tail-like structure (approximately 40 nm in length) is like the tassel of a round Chinese lantern. It could lyse six diverse cyanobacteria strains across three orders including Chroococcales, Nostocales and Oscillatoriales. The genome of the cyanophage is 40,325 bp in length, with a G + C content of 48.32%, and 59 predicted open reading frames (ORFs), only 12 (20%) of which were functionally annotated. Both BLASTn and BLASTx scanning resulted in "No significant similarity found", i.e., the Mae-Yong924-1 genome shared extremely low homology with sequences in NCBI databases. Mae-Yong924-1 formed a root node alone and monopolized a root branch in the proteomic tree based on genome-wide sequence similarities. The results suggest that Mae-Yong924-1 may reveal a new unknown family apparently distinct from other viruses.


Assuntos
Bacteriófagos/isolamento & purificação , Cianobactérias/virologia , Água Doce/virologia , Bacteriólise , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/fisiologia , Genoma Viral , Especificidade de Hospedeiro , Microcystis/virologia , Fases de Leitura Aberta , Filogenia
17.
Microbiol Spectr ; 10(1): e0229521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107319

RESUMO

Bacteriophages represent a promising option for the treatment of Clostridioides difficile (formerly Clostridium difficile) infection (CDI), which at present relies on conventional antibiotic therapy. The specificity of bacteriophages should prevent dysbiosis of the colonic microbiota associated with antibiotic treatment of CDI. While numerous phages have been isolated, none have been characterized with broad host range activity toward PCR ribotype (RT) 078 strains, despite their relevance to medicine and agriculture. In this study, we isolated four novel C. difficile myoviruses: ΦCD08011, ΦCD418, ΦCD1801, and ΦCD2301. Their characterization revealed that each was comparable with other C. difficile phages described in the literature, with the exception of ΦCD1801, which exhibited broad host range activity toward RT 078, infecting 15/16 (93.8%) of the isolates tested. In order for wild-type phages to be exploited in the effective treatment of CDI, an optimal phage cocktail must be assembled that provides broad coverage against all C. difficile RTs. We conducted experiments to support previous findings suggesting that SlpA, a constituent of the C. difficile surface layer (S-layer) is the likely phage receptor. Through interpretation of phage-binding assays, our data suggested that ΦCD1801 could bind to an RT 012 strain only in the presence of a plasmid-borne S-layer cassette corresponding to the slpA allele found in RT 078. Armed with this information, efforts should be directed toward the isolation of phages with broad host range activity toward defined S-layer cassette types, which could form the basis of an effective phage cocktail for the treatment of CDI. IMPORTANCE Research into phage therapy has seen a resurgence in recent years owing to growing concerns regarding antimicrobial resistance. Phage research for potential therapy against Clostridioides difficile infection (CDI) is in its infancy, where an optimal "one size fits all" phage cocktail is yet to be derived. The pursuit thus far has aimed to find phages with the broadest possible host range. However, for C. difficile strains belonging to certain PCR ribotypes (RTs), in particular RT 078, phages with broad host range activity are yet to be discovered. In this study, we isolate four novel myoviruses, including ΦCD1801, which exerts the broadest host range activity toward RT 078 reported in the literature. Through the application of ΦCD1801 to phage-binding assays, we provide data to support the prior notion that SlpA represents the likely phage receptor on the bacterial cell surface. Our finding directs research attention toward the isolation of phages with activity toward strains possessing defined S-layer cassette types.


Assuntos
Proteínas de Bactérias/metabolismo , Receptores de Bacteriófagos/metabolismo , Bacteriófagos/fisiologia , Clostridioides difficile/metabolismo , Clostridioides difficile/virologia , Especificidade de Hospedeiro , Proteínas de Bactérias/genética , Receptores de Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Humanos , Terapia por Fagos , Filogenia , Ribotipagem
18.
Sci Rep ; 12(1): 495, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017610

RESUMO

Among food preservation methods, bacteriophage treatment can be a viable alternative method to overcome the drawbacks of traditional approaches. Bacteriophages are naturally occurring viruses that are highly specific to their hosts and have the capability to lyse bacterial cells, making them useful as biopreservation agents. This study aims to characterize and determine the application of bacteriophage isolated from Indonesian traditional Ready-to-Eat (RTE) food to control Enterotoxigenic Escherichia coli (ETEC) population in various foods. Phage DW-EC isolated from Indonesian traditional RTE food called dawet with ETEC as its host showed a positive result by the formation of plaques (clear zone) in the bacterial host lawn. Transmission electron microscopy (TEM) results also showed that DW-EC can be suspected to belong to the Myoviridae family. Molecular characterization and bioinformatic analysis showed that DW-EC exhibited characteristics as promising biocontrol agents in food samples. Genes related to the lytic cycle, such as lysozyme and tail fiber assembly protein, were annotated. There were also no signs of lysogenic genes among the annotation results. The resulting PHACTS data also indicated that DW-EC was leaning toward being exclusively lytic. DW-EC significantly reduced the ETEC population (P ≤ 0.05) in various food samples after two different incubation times (1 day and 6 days) in chicken meat (80.93%; 87.29%), fish meat (63.78%; 87.89%), cucumber (61.42%; 71.88%), tomato (56.24%; 74.51%), and lettuce (46.88%; 43.38%).


Assuntos
Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Escherichia coli Enterotoxigênica/virologia , Conservação de Alimentos/métodos , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Animais , Bacteriófagos/classificação , Bacteriófagos/genética , Galinhas , Escherichia coli Enterotoxigênica/fisiologia , Fast Foods/virologia , Peixes , Contaminação de Alimentos/prevenção & controle , Carne/microbiologia , Myoviridae/classificação , Myoviridae/genética , Verduras/microbiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Gut Microbes ; 14(1): 2021790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35067170

RESUMO

A large number of microbial genomes have already been identified from the human gut microbiome, but the understanding of the role of the low-abundance species at the individual level remains challenging, largely due to the relatively shallow sequencing depth used in most studies. To improve genome assembling performance, a HiSeq-PacBio hybrid, ultra-deep metagenomic sequencing approach was used to reconstruct metagenomic-assembled genomes (MAGs) from 12 fecal samples. Such approach combined third-generation sequencing with ultra-deep second-generation sequencing to improve the sequencing coverage of the low-abundance subpopulation in the gut microbiome. Our study generated a total of 44 megabase-scale scaffolds, achieving four single-scaffolds of complete (circularized, no gaps) MAGs (CMAGs) that were the first circular genomes of their species. Moreover, 475 high-quality MAGs were assembled across all samples. Among them, 234 MAGs were currently uncultured, including 24 MAGs that were not found in any public genome database. Additionally, 287 and 77 MAGs were classified as low-abundance (0.1-1%) and extra-low-abundance (<0.1%) gut species in each individual, respectively. Our results also revealed individual-specific genomic features in the MAG profiles, including microbial genome growth rate, selective pressure, and frequency of chromosomal mobile genetic elements. Finally, thousands of extrachromosomal mobile genetic elements were identified from the metagenomic data, including 5097 bacteriophages and 79 novel plasmid genomes. Overall, our strategy represents an important step toward comprehensive genomic and functional characterization of the human gut microbiome at an individual level.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Bactérias/classificação , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Fezes/microbiologia , Genômica , Humanos , Microbiota , Filogenia
20.
PLoS One ; 17(1): e0262354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061755

RESUMO

The threat to public health posed by drug-resistant bacteria is rapidly increasing, as some of healthcare's most potent antibiotics are becoming obsolete. Approximately two-thirds of the world's antibiotics are derived from natural products produced by Streptomyces encoded biosynthetic gene clusters. Thus, to identify novel gene clusters, we sequenced the genomes of four bioactive Streptomyces strains isolated from the soil in San Diego County and used Bacterial Cytological Profiling adapted for agar plate culturing in order to examine the mechanisms of bacterial inhibition exhibited by these strains. In the four strains, we identified 104 biosynthetic gene clusters. Some of these clusters were predicted to produce previously studied antibiotics; however, the known mechanisms of these molecules could not fully account for the antibacterial activity exhibited by the strains, suggesting that novel clusters might encode antibiotics. When assessed for their ability to inhibit the growth of clinically isolated pathogens, three Streptomyces strains demonstrated activity against methicillin-resistant Staphylococcus aureus. Additionally, due to the utility of bacteriophages for genetically manipulating bacterial strains via transduction, we also isolated four new phages (BartholomewSD, IceWarrior, Shawty, and TrvxScott) against S. platensis. A genomic analysis of our phages revealed nearly 200 uncharacterized proteins, including a new site-specific serine integrase that could prove to be a useful genetic tool. Sequence analysis of the Streptomyces strains identified CRISPR-Cas systems and specific spacer sequences that allowed us to predict phage host ranges. Ultimately, this study identified Streptomyces strains with the potential to produce novel chemical matter as well as integrase-encoding phages that could potentially be used to manipulate these strains.


Assuntos
Bacteriófagos/isolamento & purificação , Streptomyces/metabolismo , Streptomyces/virologia , Antibacterianos/farmacologia , Bacteriófagos/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Família Multigênica/genética , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...